Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU, MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE, HARYANA DIPLOMA, MDU HARYANA

Roll No.							
ROILNO.							

Total No. of Pages :02

Total No. of Questions :18

B.Tech. (Bio Technology/Civil Engineering/Computer Science & Engineering/Electrical & Electronics Engineering/Electrical Engineering/Electronics & Communication Engineering/Information Technology/Mechanical Engineering)(Sem.–1) ENGINEERING MATHEMATICS-I

Subject Code :BTAM-101

M.Code :54091

Date of Examination : 01-07-22

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B &C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B& C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B &C.

SECTION-A

Solve the following:

- 1. Find the percentage error in the area of an ellipse when an error of +1 percent is made in measuring the major and minor axes.
- 2. If $x = r\cos\theta$ and $y = r\sin\theta$, Verify that $\frac{\partial(x, y)}{\partial(r, \theta)} \times \frac{\partial(r, \theta)}{\partial(x, y)} = 1$.
- 3. Find the radius of the curvature of $y^2 = 4ax$ at any point (x, y).
- 4. State Greens theorem in the plane.
- 5. Find the equation of tangent plane for the surface xyz = 6 at (1, 2, 3).

6. Evaluate
$$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$$

- 7. State Stoke's theorem.
- 8. Find the gradient of the function $\phi = y^2 4xy$ at (1,2).
- 9. Show that the vector field given by $\overrightarrow{F} = (-x^2 + yz)\hat{i} + (4y z^2x)\hat{j} + (2xz 4z)\hat{k}$ is solenoidal.
- 10. Define homogenous function.

1 M-54091

SECTION-B

11. Use Lagrange's method to find the minimum value of $x^2 + y^2 + z^2$ subject to the conditions x + y + z = 1 and xyz + 1=0.

12. If U=tan⁻¹
$$\frac{x^3 + y^3}{x - y}$$
.

Prove that
$$x^2 \frac{\partial^2 U}{\partial x^2} + 2xy \frac{\partial^2 U}{\partial x \partial y} + y^2 \frac{\partial^2 U}{\partial x^2} = \sin 4 u - \sin 2u = 2 \cos 3u.$$

13. a) Find all the asymptotes of the curve

$$y^{3} - 3x^{2}y + xy^{2} - 3x^{3} + 2y^{2} + 2xy + 4x + 5y + 6 = 0.$$

- b) Find the moment of inertia of the area between y = sinx from x = 0 to x = n and x-axis about each axis.
- 14. Trace the curve $y^2 = \frac{x^3}{2a x}$.

SECTION-C

- 15. a) Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.
 - b) Evaluate $\iiint x^2 yz dx dy dz$ over the region bounded by x = 0, y = 0, z = 0, x + y + z = 1.
- 16. Verify Gauss Divergence theorem for $\overrightarrow{F} = (x + y^2)\hat{i} 2x\hat{j} + 2yz\hat{k}$ takenover tetrahedron bounded by coordinate planes and the plane 2x + y + 2z = 6.
- 17. Prove that:

a)
$$curl(\phi \vec{A}) = (grad \phi) \times \vec{A} + \phi curl \vec{A}$$

b)
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r).$$

18. Verify Stoke's theorem for $\vec{F} = (x^2 + y - 4)\hat{i} + 3xy\hat{j} + (2xz + z^2)\hat{k}$ over the surface of hemisphere $x^2 + y^2 + z^2 = 16$ above XOY plane.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

B Tech-Sem 1 Computer Science & lingineing (2022). BTAM-101 Section - A 54091 OI find % euror in area of ellipse, when euror of +1 "Io is made on medseering the major and menior anis area of ellipse = tab. log A = 4x + log a + log b. $\partial(\log A) = \partial(\log \overline{A}) + \partial(\log \alpha) + \partial(\log b).$ $\frac{\partial A}{\partial a} = 0 + \frac{\partial a}{\partial a} + \frac{\partial b}{\partial b}$ $\frac{100}{A} = \frac{100}{a} = \frac{100}{a} = \frac{100}{b} = \frac{10$ $\left[\begin{array}{c} \text{Sinic} \ 100\partial a \\ a \end{array} = 1 \ 100\partial b = 1 \end{array} \right]$ $\frac{100}{\Delta} \partial A = 1 + 1 = 2.$ 0/0 lua = 2°1.

$$\begin{split} & \underbrace{\bigcirc}_{2} \qquad \chi = \Lambda (0 \ 0) \\ & \underbrace{\lor}_{2} = \Lambda S \ 0 \\ & \underbrace{\lor}_{2} =$$

$$0 \circ 0 \quad A \times \frac{1}{A} = 1 = 1.$$

$$ficound ...$$

$$03. Radiui of Cuwalin $\left[y \stackrel{*}{=} 4a \times at \text{ ft}(x,y) \right].$

$$y^{2} = 4a \times \left[y \stackrel{*}{=} 4a \times at \stackrel{*}{=} 4a \times at$$$$

d day

Q5 liquation of languit flame for surface

$$x y z = 6$$
 at $(1/23)$.
 $F(v y z) = v y z - 6 = 0$
 $ft of tanguney = (1/213)$.
 $F(v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z 0) t Fz (v 0 40 z 0) t Fz (v 0 40 z 0) = 0$.
 $Fx (v 0 40 z 0) t Fy (v 0 40 z 0) t Fz (v 0 40 z$

 $= \int_{y=0}^{y} \int_{x=0}^{y} \frac{\overline{e}^{y}}{y} dx dy.$ $= \int_{0} \frac{e^{-y}}{y} \left[x \right]_{0}^{y} dy.$ $= \int_0^\infty e^{-y} dy = 1.$ 07 Sloke Theorem o-The surface integral of and of a function our a Surface bounded by a klosed surface is equal to divie integral of particular vecta function around that supare $\oint \vec{F} \cdot d\vec{u} = \int \int (\vec{P} \times \vec{F}) \cdot d\vec{s}$. When C= closed cume. Func F) S = supace bounded by C. F = Vector fulid whose comp have voont derwaltnie in an open region of R3 containing S.

$$\begin{array}{l} \underline{O8} \\ \underline{O8} \\ \underline{O}n \\ \underline{O}n$$

Olo: homogen function:-
A function in said to be homog of x and y
y d can expressed in form of

$$x^{m} f(\frac{y}{r})$$
 when $m = degu = \int function$
 $eg = \frac{y + y}{x + y} = \frac{x^{3}(1 - \frac{y^{3}}{n^{3}})}{x(1 + y)n}$
 $= x^{*} f(\frac{y}{n})$.

Sutton-D =

$$\frac{O(1)}{O(1)} \cdot F(xyz) = x^{2} + y^{2} + z^{2} + \lambda(x+y+z-1) + \mu(xyz+1).$$

$$\frac{\partial F}{\partial x} = 2x + \lambda(1) + \mu yz. - 1.$$

$$\frac{\partial F}{\partial y} = 2y + \lambda + \mu xz. - 2.$$

$$\frac{\partial F}{\partial z} = 2z + \lambda(\mu xy). - 3.$$
Suld $3 \int e^{0} \frac{2}{2}$

$$2(x-y) + \mu z(2y-x) = 0.$$

$$x = y \int \mu = 2|z.$$

$$\begin{aligned} y = z \quad \Theta_{1} M = \frac{2}{\pi} \\ z = u \quad \Theta_{1} M = \frac{2}{y} \\ (x = y = z) \quad \Theta_{1} M = \frac{2}{\pi} = \frac{1}{y} = \frac{1}{z} \\ & Since \quad u + y + z = i \\ \quad & Sunce \quad u + y + z = i \\ \quad & Sunce \quad u + y + z = i \\ \quad & Sunce \quad u = 1/s \\ & M = 2/1/3 = 6 \\ \circ \circ \circ \left(\frac{1}{3} + \frac{1}{3}, \frac{1}{3}\right) = sdt \ fat \\ & M = 2/1/3 = 6 \\ \circ \circ \circ \left(\frac{1}{3} + \frac{1}{3}, \frac{1}{3}\right) = sdt \ fat \\ & Cl^{2}F = Fux(du)^{2} + Fyy(dy)^{2} + fzz(dz)^{2} \\ & + 2Fuy \ du dy + 2Fyz \ dy dz + 2Fzu \ dz du \\ & = 2(du)^{2} + 2(dy)^{2} + 2(dy)^{2} + 2x \\ & (x + \frac{1}{3}) dy dz + 2x \\ & (x + \frac{1}{3}) dy dz + 2x \\ & (x + \frac{1}{3}) dy dz + 2x \\ & (x + \frac{1}{3}) dz \\ & (x + dy + dz)^{2} > 0 \\ & Fru = 2(du + dy + dz)^{2} > 0 \\ & Fru = 2(du + dy + dz)^{2} > 0 \\ & (x + dy + dz)^{2} \\ & (x + dy + dz)^{2}$$

$$(1) \qquad () = 4an^{-1} \frac{x^{3}}{x} \frac{y^{3}}{y}$$

$$x = \frac{y^{2}}{y}$$

$$x^{2} = \frac{y^{2}u}{y^{4}t} + 2xy \frac{y^{3}u}{y^{4}y^{3}} + \frac{y^{3}}{y^{3}} \frac{y^{3}}{y} = \frac{5xy^{4}y^{4} - 5x^{2}u}{z^{4}}$$

$$+ 4an^{4}u = \frac{x^{3}}{x - y}$$

$$+ 4an^{4}u = \frac{y^{3}}{y} \frac{y^{3}}{y} = \frac{y^{3}}{y} (ton y) = 2 + an^{4}u$$

$$x^{3}du^{4}u \frac{y^{4}u}{y^{3}} + \frac{y^{3}}{y^{3}} \frac{y^{4}}{y} = \frac{2}ton^{4}u$$

$$x^{3}du^{4}u \frac{y^{4}u}{y^{3}} = \frac{2}{y^{4}} tu^{4}u$$

$$x^{3}\frac{y^{4}u}{y^{4}} + \frac{y^{3}}{y^{3}} = \frac{2}{y^{4}} tu^{4}u$$

$$x^{3}\frac{y^{4}u}{y^{4}} + \frac{y^{3}}{y^{4}} = \frac{2}{y^{4}} tu^{4}u$$

$$x^{3}\frac{y^{4}u}{y^{4}} + \frac{y^{3}}{y^{4}} = \frac{2}{y^{4}} tu^{4}u$$

$$x^{3}\frac{y^{4}u}{y^{4}} = \frac{2}{y^{4}} t$$

$$\chi^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2\pi y \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = (Co_{1} 2u - 1) \left(x \frac{\partial u}{\partial x} + y \frac{\partial y}{\partial y} \right)$$
$$= \left(Co_{1} 2u - 1 \right) \left(Aun 2u \right)$$
$$= \left(\chi - 2Su^{2}u - \Lambda \right) \left(Ami 2u \right)$$
$$= \left(\chi - 2Su^{2}u - \Lambda \right) \left(Ami 2u \right)$$
$$= -2Am^{2}u Ami 2u \right)$$

$$O13. dsymptotes of unum.
y^{3} - 3x^{2}y + xy^{2} - 3x^{3} + 2y^{2} + 2xy + 4xx + 5y + 6 = 0$$

$$y = mnc \ asymptote
\varphi_{3} = y^{3} - 3x^{2}y + xy^{2} - 3x^{3}$$

$$\varphi_{2} = 2y^{2} + 2xy$$

$$x = 1 \quad y = m$$

$$\frac{\varphi_{3}(m) = m^{3} - 3m + m^{2} - 3}{g(m) = 2m^{2} + 2m}$$

$$\frac{\varphi_{3}(m) = m^{3} - 3m + m^{2} - 3}{g(m) = 2m^{2} + 2m}$$

$$\frac{\varphi_{3}(m) = m^{3} - 3m + m^{2} - 3m - 3}{g(m) = 2m^{2} + 2m}$$

$$\frac{\varphi_{3}(m) = m^{3} - 3m - 3m - 3}{g(m) = 0}$$

$$m^{3} + m^{2} - 3m - 3 = 0.$$

$$(m = -1) \quad (m + 3) = 0$$

$$m = -1 \quad j \neq \sqrt{3}$$

$$C = -\frac{1}{\sqrt{3}} \int \frac{1}{(m)}$$

$$\frac{1}{\sqrt{3}} \int \frac{1}{(m)} = \frac{3}{3} m^{2} + 2m - 3$$

$$\frac{1}{\sqrt{3}} \int \frac{1}{(m)} = \frac{3}{3} m^{2} + 2m - 3$$

$$\frac{1}{\sqrt{3}} \int \frac{1}{(m)} = \frac{2m^{2} + 2m}{2}$$

$$C = -\frac{2m^{2} + 2m}{3m^{2} + 2m - 3}$$

$$C = -\frac{2m^{2} + 2m}{3m^{2} + 2m - 3} = 0$$

$$\frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt$$

asymptotic: asy of alw [] to gamin by
$$2a \cdot n = 0$$
.
... $x = 2a$.
 $g_{\mu} = \frac{\sqrt{2a \cdot x} \times \frac{1}{2}x}{\sqrt{2a - x}} \frac{1}{2} + \frac{2$

014.

$$\frac{y^2}{(2a-x)} = \frac{x^3}{(2a-x)}$$

Symetry "- leven former: sy about nami
Origin "- No const term, come kanse thrange Origin
liq of langent "-
$$2ay^2 - xy^2 - x^3 = 0$$
.
liq of langent" - $2ay^2 = 0$
 $y = 0$.
I' namis (y = 0) is langent to cure at
the Origin.

Region: $y^{\pm} = \frac{y^{3}}{2a-u}$ $y = u \int u$ $\int 2a-u$ When u < 0, y = 3mag. No cum pation is in hie to left of dim u = 0No palla of cum lie to ught of dim u = 2a

 $\underbrace{O15}_{a} Volume Connon to cy (x^2+y^2=a^2) and (x^2+z^2=a^2)$

(b) Glaluale III x y z du dy dz region bold by Cume n=0 y=0 Z=0, x+y+z=)

$$= \int_{0}^{1} \int_{0}^{1-\kappa} \frac{1-\kappa-4}{2} dz dy dx.$$

$$= \int_{0}^{1} \int_{0}^{1-\kappa} \frac{1-\kappa-4}{2} \int_{0}^{1-\kappa-4} \int_{0}^{1-\kappa-4}$$

$$\begin{split} = \frac{1}{24} \left(\left(\frac{y_{3}}{5} - x^{4} + \frac{6y_{5}}{5} - \frac{2u^{2}}{3} + \frac{y_{7}}{7} \right)_{0}^{-1} \\ = \frac{1}{2520} \text{ Am} \\ & = \frac{1}{2520} \text{ Am} \\ & \textcircled{(1)} \qquad \begin{pmatrix} p \text{ ad} \\ p \end{pmatrix} = \frac{1}{2} \left(\frac{p}{2} p \text{ ad} \\ p \end{pmatrix} \times \overrightarrow{P} + \frac{p}{2} \left(\frac{p}{R} \right) + \frac{p}{2} \left(\frac{p}{2} \left(\frac{p}{R} \right) \right) + \frac{p}{2} \times \left(\frac{2p}{2\pi} + \frac{p}{2} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{2p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{2\pi} + \frac{p}{2\pi} + \frac{p}{2\pi} \right) + \frac{p}{2\pi} \times \left(\frac{p}{$$

$$= \left(\frac{\lambda - f'' - f'}{\lambda^{2}} \right) \hat{\lambda} \overline{\lambda}^{0} + \frac{f'}{\lambda} \cdot 3 \quad \left(\operatorname{div} \overline{\lambda}^{0} = 3 \right)$$

$$= \int_{\mathcal{H}} \left(\frac{f''}{\lambda} - \frac{f'}{\lambda^{2}} \right) \hat{\lambda}^{0} \hat{\lambda}^{0} + \frac{3u'}{\lambda}$$

$$= \int_{\mathcal{H}} \left(\frac{f''}{\lambda} - \frac{f'}{\lambda^{2}} \right) + 3 \frac{f'}{\lambda} \cdot \left[\cdot \cdot \hat{\lambda} \hat{\lambda}^{-1} \right]$$

$$= \int_{\mathcal{H}} \left(-\frac{f'}{\lambda} + 3 \frac{f'}{\lambda} + \frac{f'}{\lambda} + \frac{f''}{\lambda} + \frac{2f'}{\lambda} \right)$$

$$\left(\operatorname{LHS} = \operatorname{RHS} \right)$$

$$\int_{\operatorname{Fround}}$$

0 18.

$$F = (x^{2} + y - 4)\hat{i} + 3xy\hat{g} + k^{2}(2xz + z^{2}).$$

$$S = x^{2} + y^{2} + z^{2} - 16.$$

$$Cue F = |\hat{i} + \hat{g} + \hat{k}|$$

$$\frac{\partial}{\partial x} - \frac{\partial}{\partial y} - \frac{\partial}{\partial z}|_{x + y} = -\partial z\hat{g} + (\partial y + 1)\hat{k}.$$

$$x + y = 2xz + z^{2}$$

$$x + y = 2xz + z^{2}$$

$$\begin{aligned} & porametri & G_{2}^{i-} & x = r(o \circ S_{1}^{i}) \\ & y = r S_{1}^{i} \circ S \circ \varphi \\ & z = r & (o \circ \varphi). \end{aligned}$$

$$\int f \cdot dt = \int_{0}^{1\pi} f(A) \cdot A(0) d0$$

$$= \int_{0}^{1\pi} (6(a^{10} + 45in - 4)) f(A) \cdot A(0) d0$$

$$= \int_{0}^{1\pi} (-45in - 445in - 4)) f(A) \cdot 5in + 46in + 6in - 6in + 65in - 4in + 16in + 16in$$