Roll No. \square Total No. of Pages : 02
Total No. of Questions :18
B.Tech. (Bio Technology/Civil Engineering/Computer Science \&

Engineering/Electrical \& Electronics Engineering/Electrical
Engineering/Electronics \& Communication Engineering/Information
Technology/Mechanical Engineering)(Sem.-1)
ENGINEERING MATHEMATICS-I
Subject Code :BTAM-101
M.Code :54091

Date of Examination : 01-07-22
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \&C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B\& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \&C.

SECTION-A

Solve the following:

1. Find the percentage error in the area of an ellipse when an error of +1 percent is made in measuring the major and minor axes.
2. If $x=r \cos \theta$ and $y=r \sin \theta$, Verify that $\frac{\partial(x, y)}{\partial(r, \theta)} \times \frac{\partial(r, \theta)}{\partial(x, y)}=1$.
3. Find the radius of the curvature of $y^{2}=4 a x$ at any point (x, y).
4. State Greens theorem in the plane.
5. Find the equation of tangent plane for the surface $x y z=6$ at $(1,2,3)$.
6. Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
7. State Stoke's theorem.
8. Find the gradient of the function $\phi=y^{2}-4 x y$ at $(1,2)$.
9. Show that the vector field given by $\vec{F}=\left(-x^{2}+y z\right) \hat{i}+\left(4 y-z^{2} x\right) \hat{j}+(2 x z-4 z) \hat{k}$ is solenoidal.
10. Define homogenous function.

SECTION-B

11. Use Lagrange's method to find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the conditions $x+y+z=1$ and $x y z+1=0$.
12. If $\mathrm{U}=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$.

Prove that $x^{2} \frac{\partial^{2} \mathrm{U}}{\partial x^{2}}+2 x y \frac{\partial^{2} \mathrm{U}}{\partial x \partial y}+y^{2} \frac{\partial^{2} \mathrm{U}}{\partial x^{2}}=\sin 4 u-\sin 2 u=2 \cos 3 u$.
13. a) Find all the asymptotes of the curve

$$
y^{3}-3 x^{2} y+x y^{2}-3 x^{3}+2 y^{2}+2 x y+4 x+5 y+6=0
$$

b) Find the moment of inertia of the area between $y=\sin x$ from $x=0$ to $x=n$ and $x-$ axis about each axis.
14. Trace the curve $y^{2}=\frac{x^{3}}{2 a-x}$.

SECTION-C

15. a) Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.
b) Evaluate $\iiint x^{2} y z d x d y d z$ over the region bounded by $x=0, y=0, z=0, x+y+z=1$.
16. Verify Gauss Divergence theorem for $\vec{F}=\left(x+y^{2}\right) \hat{i}-2 x \hat{j}+2 y z \hat{k}$ takenover tetrahedron bounded by coordinate planes and the plane $2 x+y+2 z=6$.
17. Prove that:
a) $\operatorname{curl}(\phi \vec{A})=(\operatorname{grad} \phi) \times \vec{A}+\phi \operatorname{curl} \vec{A}$
b) $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
18. Verify Stoke's theorem for $\vec{F}=\left(x^{2}+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^{2}\right) \hat{k}$ over the surface of hemisphere $x^{2}+y^{2}+z^{2}=16$ above XOY plane.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

BTech-Sem 1
Computa screvice \$ ringinaing

Suction-A
(2022).

$$
\begin{gathered}
\text { B T AM-101 } \\
54091
\end{gathered}
$$

Q1. find \% evor. ni area of ellipse, when ecror of +1 $\%$ is mad on medsunery the maja and menor anis
area of ellepise $=\pi a b$.

$$
\begin{aligned}
& \log A=\lg \pi+\log a+\log b . \\
& \partial(\log A)=\partial(\log \pi)+\partial(\log a)+\partial(\log b) . \\
& \frac{\partial A}{A}=0+\frac{\partial a}{a}+\frac{\partial b}{b} . \\
& \frac{100}{A} \partial A=\frac{100}{a} \partial a+\frac{100}{b} \partial b . \\
& {\left[\operatorname{Sincr} \frac{100 \partial a}{a}=1 \frac{100}{b} \partial b=1\right]} \\
& \frac{100}{A} \partial A=1+1=2 . \\
& \% \text { ena }=2 \% .
\end{aligned}
$$

Q_{2}

$$
x=\Lambda \cos \theta .
$$

$$
\begin{aligned}
& y=1 S \theta \\
& \frac{\partial(x, y)}{\partial(1, \theta)} \times \frac{\partial(x, \theta)}{\partial(x, y)}=1 . \\
& \frac{\partial(x, y)}{\partial(\lambda, \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial \mu} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial \Lambda} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{ll}
\operatorname{Cos} \theta-r \sin \theta \\
\operatorname{Sin} \theta & r \cos \theta
\end{array}\right| \\
& =\mu \cos ^{2} \theta+\mu \operatorname{Sun}^{2} \theta \\
& =\Lambda \text {. } \\
& \frac{\partial(\Lambda, \theta)}{\partial(x, y)}=\left|\begin{array}{cc}
\frac{\partial \Lambda}{\partial x} & \frac{\partial \Lambda}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right| \\
& =\left|\begin{array}{ll}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right| \\
& \theta=\tan ^{-1}\left(\frac{g}{x}\right) \\
& =\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y^{2}}{\left(\begin{array}{c}
\left.x^{2}+y^{2}\right)^{3} \\
1-y
\end{array} / L\right.} \\
& =\left(x^{2}+4^{2}\right)^{2}=\frac{1}{\left(x^{2}+4\right)^{2} 112}
\end{aligned}
$$

$\therefore \quad \lambda \times \frac{1}{\lambda}=1=1$.
prooued ...
Q3. Dadmi of cuwalime $y^{2}=4 a x$ at $p t(x, y)$.

$$
\begin{array}{rlrl}
y^{2}=4 a x & & \text { Rad of cunvatu } \\
2 y \frac{d y}{d x} & =4 a . & R=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2} \frac{d^{2} y}{d x^{2}} \\
y \frac{d y}{d x} & =2 a . & =\left[1+\frac{4 a^{2}}{y^{2}}\right]^{3 / 2} \times-\frac{4 a^{2}}{y^{3}} \\
\frac{d y}{d x} & =\left(\frac{2 a}{y}\right) & =-\left(y^{2}+4 a^{2}\right)^{2} 4 a^{2} \\
\frac{d^{2} y}{d x^{2}} & =-\frac{2 a}{y^{2}}\left(\frac{d y}{d x}\right) . & & =-\frac{2 a}{y^{2}} \times \frac{2 a}{y} \\
& & & \\
\frac{d^{2} y}{d x^{2}} & =\frac{-4 a^{2}}{y^{3}} &
\end{array}
$$

Q4. Green Theorem:-
Let C be posilvely ovenited, smooth and simples closed cume in a plane and D regron bounded by C If L and M are function of x and $y(x, y)$ defmid On Open ugron, containg D and have conlionions partial denwatues, tien green th stated as;

$$
\oint_{C} M d x+N d y=\iint_{\alpha}\left(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial y}\right) d x d y \text {. }
$$

Q5 Squation of langint plane fo sunface

$$
\begin{aligned}
& x y z=6 \text { at }(1,23) . \\
& F(x y z)=x y z-6=0
\end{aligned}
$$

$$
\text { pt of tangmey }=(1,2,3) \text {. }
$$

$$
\begin{gathered}
F_{x}(x 0 y 0 z 0)+F y(x 0 y 0 z 0)+F_{z}(x 0 y 0 z 0)=0 . \\
\longrightarrow y z(1,2,3)+x z(1,2,3)+x y(1, z, 3)=0 \\
(x-1)(y-2) \quad(z-3) \\
2 \times 3(x-1)+3(y-2)+2(z-3)=0 \\
\rightarrow 6(x-1)+3(y-2)+2(z-3) \\
6 x-6+3 y-6+2 z-6 \\
6 x+3 y+2 z-18=0
\end{gathered}
$$

Q6. $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
Reg of Inty $y=x \quad y=\infty$

$$
\begin{aligned}
& =\int_{y=0}^{\infty} \int_{x=0}^{y} \frac{e^{-y}}{y} d x d y \\
& =\int_{0}^{\infty} \frac{e^{-y}}{y}[x]_{0}^{y} d y \\
& =\int_{0}^{\infty} e^{-y} d y=1
\end{aligned}
$$

Q7. Sloker Therm :-
The surface integral of curl of a function over a surface bounded by a closed surface is equal to dive integral of particular nectar function around that slice

$$
\oint_{c} \vec{F} \cdot \overrightarrow{d r}=\iint_{S}(\nabla \times \vec{F}) \cdot d \vec{s}
$$

Where $C=$ closed cure.
$S=$ surface bounded by C.
$F=$ vector fula whose comp have cont sunvalui in an open region of R^{3} conlani S.

Q8. Grovient $\phi=\left(y^{2}-4 x y\right)$ at $(1,2)$.

$$
\begin{aligned}
\phi x & =-4 y \\
\phi y & =2 y-4 x . \\
\nabla \phi & =\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{g} \frac{\partial \varphi}{\partial y} . \\
& =\hat{\imath}(-4 y)+\hat{\jmath}(2 y-4 x) . \\
& =-4 \hat{\imath}+\hat{g}(4-4) . \\
& =-4 \hat{\imath}+0 \hat{\jmath} .
\end{aligned}
$$

Q9. $\vec{F}=\operatorname{soln}$ oid (TP)

$$
\vec{F}=\left(-x^{2}+y^{z}\right) \hat{\imath}+\left(4 y-z^{2} x\right) \hat{\jmath}+(2 x z-4 z) \hat{k}
$$

is (solenoid).
Solenadial $(\nabla \cdot \vec{F}=0)$

$$
\begin{gathered}
\hat{i} \frac{\partial F}{\partial x}+\hat{g}^{\hat{2}} \frac{\partial F}{\partial y}+\hat{k} \frac{\partial F}{\partial z}=0 \\
-2 \not y+4+(2 x-4)=0 \\
0=0
\end{gathered}
$$

\therefore fuld ii solenocital.

O10. homogen function:-
A furction is said to be homog of x and y
if d can expressed in form of $x^{n} \neq\left(\frac{y}{n}\right)$ Wher $n=$ olegn 17 finetioi

$$
\begin{aligned}
\lg z=\frac{x^{3}-y^{3}}{x+y} & =\frac{x^{3}\left(1-\frac{y^{3}}{x^{3}}\right)}{x(1+y / x)} \\
& =x^{2} f(y / x) .
\end{aligned}
$$

Sution-B:-
Q11. $F(x y z)=x^{2}+y^{2}+z^{2}+\lambda(x+y+z-1)+\mu(x y z+1)$.

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=2 x+\lambda(1)+\mu y z \\
& \frac{\partial F}{\partial y}=2 y+\lambda+\mu x z \\
& \frac{\partial F}{\partial z}=2 z+\lambda(\mu x y)
\end{aligned}
$$

Sulit 3 fon 2

$$
\begin{array}{r}
2(x-y)+\mu z(y-x)=0 \\
x=y \quad \mu=2 \mid z
\end{array}
$$

$$
\begin{aligned}
& y=z \quad \text { or } \mu=\frac{2}{x} \\
& z=x \quad \text { or } \mu=\frac{2}{y} \\
& (x=y=z) \quad \text { or } \mu=\frac{2}{x}=\frac{2}{y}=\frac{2}{z} .
\end{aligned}
$$

Since $x+y+z=1$

$$
\begin{aligned}
& 3 x=1 \\
& x=1 / 3 \therefore y=1 / 3 \therefore z=1 / 3 . \\
& \mu=2 / 1 / 3=6 \\
& \therefore \therefore\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=s t f t \\
& d^{2} f=f_{u x}(d x)^{2}+f_{y y}(d y)^{2}+f_{z z}(d z)^{2} \\
&+2 f_{x y} d x d y+2 f y z d y d z+2 f_{z x} d z d x . \\
&=2(d x)^{2}+2(d y)^{2}+2(d y)^{2}+2 \times 6 \times \frac{1}{3} d x d y \\
&+2 \times 6 \times \frac{1}{3} d y d z+2 \times 6 \times \frac{1}{3} d z d x . \\
&=2(d x+d y+d z)^{2}>0 .
\end{aligned}
$$

$\therefore F(x y z)$ is min at $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
and min value $=\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}$

$$
=\frac{3}{9}=1 / 3 .
$$

Q12.

$$
\begin{aligned}
& U=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y} \\
& x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\sin 4 u-\sin 2 u
\end{aligned}
$$

$$
\begin{aligned}
& \tan u=\frac{x^{3}+y^{3}}{x-y} \\
& \tan u=x^{2} f(y / x)
\end{aligned}
$$

luver $\Gamma:-x \frac{\partial}{\partial x}(\tan u)+y \frac{\partial}{\partial y}(\tan y c)=2 \tan u$.

$$
\begin{aligned}
& x \operatorname{suc}^{2} u \frac{\partial u}{\partial x}+y \operatorname{sus}^{2} u \frac{\partial u}{\partial y}=2 \tan u \\
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{2 \tan u}{\operatorname{sus}^{2} u} \\
&=\frac{2 \sin u}{\cos x} \times \cos ^{2} u \\
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dyy w.At } n \\
& x \frac{\partial^{2} u}{\partial u^{2}}+\frac{\partial u}{\partial n}+y \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial u}{\partial y} \times 0=\cos 2 u \times 2 \frac{\partial u}{\partial x} .
\end{aligned}
$$

Dyj w.it n.

Suby

$$
\begin{gathered}
\frac{y^{2}}{\partial y^{2} u} \\
\rightarrow y^{2}
\end{gathered}+x y \frac{\partial^{2} u}{\partial y^{2}}=y(2 \cos 2 u-1) \frac{\partial u}{\partial y} \cdot * *
$$

aclden

$$
\left.\begin{array}{rl}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}} & =(\cos 2 u-1)\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right) \\
& =(\cos 2 u-1)(\sin 2 u) \\
& =\left(x-2 \sin ^{2} u-1\right)(\sin 2 u \\
\left\{x^{2} \frac{\partial^{2} u}{\partial u^{2}}+2 x y \frac{\partial^{2} u}{\partial x^{2} y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}\right. & \left.=-2 \sin ^{2} u \sin 2 u\right\}
\end{array}\right\} .
$$

prooved:-

Q13. Asymptoter of cume.

$$
y^{3}-3 x^{2} y+x y^{2}-3 x^{3}+2 y^{2}+2 x y+4 x+5 y+6=0
$$

$y=m x c i$ asymptote

$$
\varphi_{3}=y^{3}-3 x^{2} y+x y^{2}-3 x^{3}
$$

$$
\Phi_{2}=2 y^{2}+2 x y
$$

$$
\varphi_{2}=2 y^{2}+2 x y
$$

$$
x=1 \quad y=m
$$

$$
\begin{aligned}
& =1 \quad y=m \\
& \varphi_{3}(m)=m^{3}-3 m+m^{2}-3 \quad \phi(\overline{2} m)=2 m^{2}+2 m .
\end{aligned}
$$

$$
=m^{3}+m^{2}-3 m-3
$$

Suncir $\varphi_{3}(m)=0$.

$$
\begin{array}{r}
m^{3}+m^{2}-3 m-3=0 \\
(m+1)\left(m^{2}-3\right)=0 \\
m=-1, \pm \sqrt{3}
\end{array}
$$

$$
\begin{aligned}
& C=\frac{-\varphi_{2}(m)}{\varphi_{3}^{\prime}(m)} . \\
& \phi_{3}^{\prime}(m)=3 m^{2}+2 m-3 \\
& \varphi_{2}(m)=2 m^{2}+2 m \text {. } \\
& \rightarrow m=-1 \\
& C=\frac{-\left(2 m^{2}+2 m\right)}{3 m^{2}+2 m-3} . \\
& =-\frac{(2 \times 1+2 \times-1)}{3-2-3}=0 \\
& \rightarrow m=\sqrt{3} \\
& C=\frac{-\left(2 m^{2}+2 m\right)}{3 m^{2}+2 m-3}=-1 \\
& \longrightarrow m=-53 \\
& C=\frac{-\left(2 m^{2}+2 m\right)}{3 m^{2}+2 m-3}=-1 \\
& y=m x+c \\
& m=-1 \\
& m=J_{3} \quad m=-J_{3} . \\
& y= \pm \sqrt{3} x-1 \quad y=-\sqrt{3} x-1 \\
& y=-J_{3} x-1 \text {. } \\
& y=-x+0 \\
& y=-x \\
& y=\sqrt{3} x-1 \\
& y=-\sqrt{3 x}-1
\end{aligned}
$$

Asymplote: asy of cume // to y ami by $2 a-x=0$.

$$
\therefore x=2 a \text {. }
$$

sp:

$$
\begin{aligned}
& y=\frac{x^{3 / 2}}{\sqrt{2 a-x}} \\
& \frac{d y}{d x}=\frac{\sqrt{2 a-x} \times \frac{3}{2} x^{1 / 2}-x^{3 / 2} \times \frac{1}{2 \sqrt{2 a^{-x}}}}{(2 a-x)} \times-1 \\
& \frac{d y}{d x}=\frac{\sqrt{x}(3 a-x)}{(2 a-x)^{3 / 2}} \\
& \longrightarrow \frac{d y}{d x}=0 \\
& \frac{\sqrt{x}(3 a-x)}{(2 a-x)^{3 / 2}}=0 . \\
& x=0 \quad x=3 a .
\end{aligned}
$$

$\operatorname{Ry}(3 a=x)$ because when $x=3 a, y=$ may. $x=0 \& 4=0$ laingut at $(0,0)$ pavalul to $x a$ when $0<x<2 a \quad \frac{d y}{d x}=t w$

Q14.

$$
\begin{gathered}
y^{2}=\frac{x^{3}}{2 a-x)} \\
\longrightarrow \sqrt{y^{2}(2 a-x)=x^{3}}
\end{gathered}
$$

Symetry:- leven power.: syahout nami
Orgin:- No Const tem, Coun passe thaugh Ongni. Me of langut:-

$$
2 a y^{2}-x y^{2}-x^{3}=0 .
$$

liq of langutio- $2 a y^{2}=0$

$$
y=0
$$

ie x ani $(y=0)$ is langut to cume at the ongin.
pet of Int:- Put $y=0$ we get $n=0$
\therefore Cure mect x anii and y ani at Origin.

Region: $y^{2}=\frac{x^{3}}{2 a-x}$.

$$
\begin{aligned}
& y=\sqrt[x]{x} \\
& \sqrt{2 a-x}
\end{aligned}
$$

when $x<0, y=2$ mag.
\therefore No cun pation is in hi to left of dim $x=0$
\therefore No paleo of cume lie to ught 5 din $x=2 a$
\rightarrow Section - C

Q15. a Volume Comon to cy $\left(x^{2}+y^{2}=a^{2}\right)$ and

$$
\left(x^{2}+z^{2}=a^{2}\right)
$$

(b.) Elvaluale $\iiint x^{2} y z d x d y d z$ negion bold by cume $\quad x=0 \quad y=0 \quad z=0, x+y+z=1$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-4} x^{2} y z d z d y d x \text {. } \\
& =x_{1-x}^{2} y\left[\frac{z^{2}}{2}\right]_{0}^{1-x-y} \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{x^{2} y}{2}\left[(1-x-y)^{2}-0\right] d y d x \text {. } \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{x^{2}}{2} y\left[1+(x+4)^{2}-2(x+4)\right] \text {. } \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{x^{2} y}{2}\left(1+x^{2}+y^{2}+2 x^{4}-2 x-2 y\right) d y d x \text {. } \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{x^{2} y}{2}+\frac{x^{4} y}{2}+\frac{x^{2} y^{3}}{2}+\frac{\not x^{3} y^{2}}{\not 2}+\frac{2 x^{3} y}{\not 2} \\
& -\frac{d x^{2} y^{2}}{\mu} d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{x^{2} y}{2}+\frac{x^{4} y}{2}+\frac{x^{2} y^{3}}{2} d y d x \text {. } \\
& =\frac{1}{24} \int_{0}^{1} x^{2}\left(1-4 x+6 x^{2}-4 x^{3}+x^{4}\right) d x \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{24}\left(\frac{x^{3}}{3}-x^{4}+\frac{6 x 5}{5}-\frac{2 x^{6}}{3}+\frac{x^{7}}{7}\right]_{0}^{1} \\
& =\frac{1}{2520}
\end{aligned}
$$

Q. 11 Proon.

$$
\text { Proow }(\underset{A}{ })=(\operatorname{grad} \phi) \times \vec{A}+\phi \text { curl } \vec{A} \text {. }
$$

$$
\begin{array}{r}
\operatorname{Cim}(\phi \vec{A})=\hat{\imath} \times \frac{\partial}{\partial x}(\varphi \vec{A})+\hat{\jmath} \times \frac{\partial}{\partial y}(\varphi \vec{A})+ \\
\hat{k} \times \frac{\partial}{\partial z}(\varphi \vec{A}) .
\end{array}
$$

$$
\begin{aligned}
& =\hat{\jmath} \times\left(\frac{\partial \phi}{\partial u} \vec{A}+\phi \frac{\partial \vec{A}}{\partial u}\right)+ \\
& \hat{g} \times\left(\frac{\partial \phi}{\partial y} \vec{A}+\phi \frac{\partial \vec{A}}{\partial y}\right)+ \\
& \hat{k} \times\left(\frac{\partial \phi}{\partial z} \vec{A}+\phi \frac{\partial \vec{A}}{\partial z}\right) . \\
& \quad=\nabla \phi \times \vec{A}+\phi \text { cull } \vec{A}
\end{aligned}
$$

$$
=\text { RHS proond. }
$$

(b.) $\nabla^{2} f(\Omega)=f^{\prime \prime}(\mu)+\frac{2}{\mu} f^{\prime}(\mu)$.

LHS

$$
\begin{aligned}
\nabla^{2} f(\Lambda) & =\frac{\nabla \cdot \nabla f(\imath)}{\bar{\nabla}} \\
& =\nabla\left(f^{\prime} \hat{\imath}\right) \\
& =\nabla\left(\frac{f^{\prime}}{\Lambda} \vec{\Lambda}^{p}\right) \\
& =\nabla\left(\frac{f^{\prime}}{\imath}\right) \vec{\Lambda}^{D}+\frac{f^{\prime}}{\Lambda} \operatorname{div} \vec{\Lambda}^{D}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{r f^{\prime \prime}-f^{\prime}}{r^{2}}\right) \hat{\imath} \vec{\imath}+\frac{f^{\prime}}{r} \cdot 3 \quad(\operatorname{div} \vec{\imath}=3) \\
& =\mu\left(\frac{f^{\prime \prime}}{r}-\frac{f^{\prime}}{r^{2}}\right) \hat{\mu} \hat{\imath}+\frac{3 u^{\prime}}{\mu} \\
& =r\left(\frac{f^{\prime \prime}}{r}-\frac{f^{\prime}}{r^{2}}\right)+3 \frac{f^{\prime}}{r} \cdot[\because \hat{r} \hat{\imath}=1] \\
& =f^{\prime \prime}-\frac{f^{\prime}}{\mu}+\frac{3 f^{\prime}}{r}=f^{\prime \prime}+\frac{2 f^{\prime}}{r} \\
& \quad(L H S=\text { RHS }) \\
& \text { prooned. }
\end{aligned}
$$ prooned.

Q 18.

$$
\begin{aligned}
& \vec{F}=\left(x^{2}+y-4\right) \hat{\imath}+3 x y \hat{\jmath}+\hat{k}\left(2 x z+z^{2}\right) . \\
& s=x^{2}+y y^{2}+z^{2}-16 . \\
& \text { Cune } F=\left|\begin{array}{ccc}
\hat{\imath} & \hat{g} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}+y & 3 x y & 2 x z z^{2}
\end{array}\right|=-2 z \hat{\jmath}+(3 y+1) \hat{k} .
\end{aligned}
$$

parameti Eq:-

$$
\begin{aligned}
& x=r \cos \theta \sin \phi \\
& y=1 \sin \theta \delta \phi . \\
& z=r \operatorname{co\phi } \phi .
\end{aligned}
$$

put ($z=0$).

$$
\left.\begin{array}{rl}
\int D F \cdot d r & =\int_{0}^{2 \pi} f(\lambda) \cdot \mu(\theta) d \theta \\
& =\int_{0}^{2 \pi}\left(16 \cos ^{2} \theta+4 \sin \theta-4\right) \hat{\imath}+(4 r \sin \theta \cos \theta \hat{k}) \\
(-4 \sin \theta \hat{\jmath}+4 \cos \hat{\eta}+ \\
0 \hat{k}) d \theta
\end{array}\right)
$$

$$
\frac{\delta \phi}{\delta \lambda}=(\cos \theta, \sin \theta, 0)
$$

$$
\left.\frac{S \phi}{S \theta}=f r \sin \theta, \wedge \cos \theta, 0\right)
$$

$$
\begin{aligned}
\frac{\delta \phi}{\delta \Lambda} \times \frac{\delta \varphi}{\delta \theta}=\hat{\imath}(0+0) & -\hat{\imath}(0) \\
& +\hat{k}\left(\varepsilon \cos ^{2} \theta+\right. \\
& =\hat{\lambda}+\hat{k}
\end{aligned}
$$

$\iint{\underset{4}{2 k}}_{(\text {curl } F)} \cdot m d A$.

$$
\begin{aligned}
& =\int_{0}^{4} \int_{0}^{2 k}(-2)(0) \hat{g}+(3 \imath \sin \theta+1) \hat{k}(r \hat{k}) d \lambda d \theta \\
& \int_{0}^{4} \int_{0}^{2 \pi}\left(3 \mu^{2} \sin \theta+\mu\right) d \mu d \theta \text {. } \\
& \int_{0}^{4}\left(3 a^{2} \cos \theta+\lambda \theta\right) 0^{2 \pi} d x \\
& \int_{0}^{4}-3 \wedge^{2}+2 \pi n+3 n^{2}-0 d r \\
& =\left[\frac{-3 \mu^{3}}{3}+\frac{2 \pi \Lambda^{2}}{2}+\frac{3 n^{3}}{3}\right]_{0}^{4} \\
& =-64+16 \pi+64=16 \pi A_{2}
\end{aligned}
$$

