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B.Tech. (Bio Technology/Civil Engineering/Computer Science & 
Engineering/Electrical & Electronics Engineering/Electrical 

Engineering/Electronics & Communication Engineering/Information 
Technology/Mechanical Engineering)(Sem.–1) 

ENGINEERING MATHEMATICS-I 
Subject Code :BTAM-101 

M.Code :54091 
Date of Examination : 01-07-22 

Time : 3 Hrs. Max. Marks : 60 

INSTRUCTIONS TO CANDIDATES : 
 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks 

each. 
 2. SECTION - B &C. have FOUR questions each. 
 3. Attempt any FIVE questions from SECTION B& C carrying EIGHT marks each. 
 4. Select atleast TWO questions from SECTION - B &C. 
 

SECTION-A 

 Solve the following: 
 1. Find the percentage error in the area of an ellipse when an error of +1 percent is made in 

measuring the major and minor axes. 

 2. If x = rcos  and y = r sin , Verify that ( , ) ( , ) 1
( , ) ( , )
x y r
r x y

  
 

  
. 

 3. Find the radius of the curvature ofy2 = 4ax at any point (x, y). 
 4. State Greens theorem in the plane.  

 5. Find the equation of tangent plane for the surface xyz = 6 at (1, 2, 3). 

 6. Evaluate 
0

y

x
e dy dx

y

 
  . 

 7. State Stoke’s theorem. 

 8. Find the gradient of the function  = y2– 4xy at (1,2). 

 9. Show that the vector field given by 2 2( ) (4 ) (2 4 )F x yz i y z x j xz z k
   
        is 

solenoidal. 
 10. Define homogenous function. 
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SECTION-B 

 11. Use Lagrange’s method to find the minimum value of x2 +y2 + z2 subject to the conditions 
x + y + z = 1 and xyz + 1=0. 

 12. If 
3 3

1U tan x y
x y

 



. 

  Prove that 
2 2 2

2 2
2 2
U U U2x xy y

x yx x
  

 
  

= sin 4 u – sin 2u = 2 cos 3u. 

 13. a) Find all the asymptotes of the curve 

   y3– 3x2y + xy2– 3x3 + 2y2 + 2xy + 4x + 5y + 6 = 0. 

  b) Find the moment of inertia of the area between y = sinx from x = 0 to x = n and x– 
axis about each axis. 

 14. Trace the curve y2 =
3

.
2

x
a x

 

 

SECTION-C 

 15. a) Find the volume common to the cylinders x2 + y2 = a2 and x2 + z2 = a2. 

  b) Evaluate x2yzdxdydz over the region bounded byx = 0,y = 0,z = 0,x + y + z = l. 

 16. Verify Gauss Divergence theorem for 2( ) 2 2F x y i x j yz k
   
    takenover tetrahedron 

bounded by coordinate planes and the plane 2x + y + 2z = 6. 

 17. Prove that: 

  a) ( ) ( )curl A grad A curl A
  

      

  b) 2 2
( ) ( ) ( ).f r f r f r

r
     

 18. Verify Stoke’s theorem for 2 2( 4) 3 (2 )F x y i xy j xz z k
   
       over the surface of 

hemisphere x2+y2+z2 = 16 above XOY plane. 

   

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any 
page of Answer Sheet will lead to UMC against the Student. 
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